Statics: Force balance
table of contents
Balance of power
Force magnitude and direction

Figure 1: Force magnitude and direction
Force synthesis

Figure 2 (a): Force synthesis

Figure 2 (b): Force synthesis
$$\angle{O’A’B’}=\pi-\theta$$
$$
F^2=F1^2+F2^2-2F1F2cos(\pi-\theta)
$$
$$
cos(\pi-\theta)=-cos\theta Than
$$
$$
F^2=F1^2+F2^2+2F1F2cos\theta …formula①
$$
When F1 = 15N, F2 = 10N, θ = 50 °, find the angle θ1 between the two forces F1 and F2 shown in Fig. 3 (a).

Figure 3 (a): magnitude and direction of resultant force
$$
F^2=F1^2+F2^2+2F1F2cos\theta …formula①
$$
$$F1=15N, F2=10N, θ=50° Substituting$$
$$
F^2=15^2+10^2+2\times15\times10\cos50^{\circ}
$$
$$
F=\sqrt{15^2+10^2+2\times15\times10\cos50^{\circ}}
$$
$$\cos50^{\circ}=0.96 Than$$
$$F=24.8N$$

Figure 3 (b): magnitude and direction of resultant force
$$F\sin\theta1=F2\sin\theta…② Because$$
$$24.8\sin\theta1=10\sin50^{\circ}$$
$$Therefore, \sin\theta1=0.104$$
$$therefore \theta1=6^{\circ}$$
Calculate Example 1 with python
Let’s solve the above example by programming with Python.
When F1 = 15N, F2 = 10N, θ = 50 °, find the angle θ1 between the two forces F1 and F2 shown in Fig. 3 (a).
- Click here to build the environment for Python3
Find the resultant force of F1 and F2

Figure 3 (a): magnitude and direction of resultant force
#Standard module math import
import math
# Define a variable given by the subject
F1 = 15
F2 = 10
# Define expression ① as a function
def addfoce():
F = F1**2+F2**2+2*F1*F2*math.cos(50)
G = math.sqrt(F) #Square root of equation ①
return G
print(round(addfoce(), 1)) #Process up to the first decimal place and output the result
# Result:24.8N
Find the angle between F1 and the resultant force F
When F1 = 15N, F2 = 10N, θ = 50 °, find the angle θ1 between the two forces F1 and F2 shown in Fig. 3 (a).
- Click here to build the environment for Python3

Figure 3 (b): magnitude and direction of resultant force
#Standard module math import
import math
# Define a variable given by the subject
F = 24.8
F2 = 10
# Define expression ② with a function
def theta():
a = F2*math.sin(50)/F
b = math.degrees(a) #Converting from radians to degrees is math.degrees ()
return b
print(round(theta())) #Round the decimal point and output the result
#Result 6°